Computationally efficient sup-t transitive closure for sparse fuzzy binary relations

نویسندگان

  • Manolis Wallace
  • Yannis S. Avrithis
  • Stefanos D. Kollias
چکیده

The property of transitivity is one of the most important for fuzzy binary relations, especially in the cases when they are used for the representation of real life similarity or ordering information. As far as the algorithmic part of the actual calculation of the transitive closure of such relations is concerned, works in the literature mainly focus on crisp symmetric relations, paying little attention to the case of general fuzzy binary relations. Most works that deal with the algorithmic part of the transitive closure of fuzzy relations only focus on the case of max-min transitivity, disregarding other types of transitivity. In this paper, after formalizing the notion of sparseness and providing a representation model for sparse relations that displays both computational and storage merits, we propose an algorithm for the incremental update of fuzzy sup-t transitive relations. The incremental transitive update (ITU) algorithm achieves the re-establishment of transitivity when an already transitive relation is only locally disturbed. Based on this algorithm, we propose an extension to handle the sup-t transitive closure of any fuzzy binary relation, through a novel incremental transitive closure (ITC) algorithm. The ITU and ITC algorithms can be applied on any fuzzy binary relation and t-norm; properties such as reflexivity, symmetricity and idempotency are not a requirement. Under the specified assumptions for the average sparse relation, both of the proposed algorithms have considerably smaller computational complexity than the conventional approach; this is both established theoretically and verified via appropriate computing experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Algorithms for Fast Incremental Transitive Closure of Sparse Fuzzy Binary Relations

Sparse fuzzy ordering and partial ordering relations have recently become of great importance in the field of knowledge systems. As the size of the relations utilized in such a framework is extremely large, efficient algorithms are needed for their handling. More specifically, when a part of such a relation is updated, the property of transitivity needs to be re-established in timely manner, as...

متن کامل

Fuzzy number-valued fuzzy ‎relation

It is well known fact that binary relations are generalized mathematical functions. Contrary to functions from domain to range, binary relations may assign to each element of domain two or more elements of range. Some basic operations on functions such as the inverse and composition are applicable to binary relations as well. Depending on the domain or range or both are fuzzy value fuzzy set, i...

متن کامل

Transitive Closure of Interval-valued Fuzzy Relations

In this paper are introduced some concepts of interval-valued fuzzy relations and some of their properties: reflexivity, symmetry, T-transitivity, composition and local reflexivity. The existence and uniqueness of T-transitive closure of interval-valued fuzzy relations is proved. An algorithm to compute the T-transitive closure of finite interval-valued fuzzy relations is showed. Some propertie...

متن کامل

A New Algorithm to Compute Low T-Transitive Approximation of a Fuzzy Relation Preserving Symmetry. Comparisons with the T-Transitive Closure

It is given a new algorithm to compute a lower T-transitive approximation of a fuzzy relation that preserves symmetry. Given a reflexive and symmetric fuzzy relation, the new algorithm computes a T-indistinguishability that is contained in the fuzzy relation. It has been developed a C++ program that generates random symmetric fuzzy relations or random symmetric and reflexive fuzzy relations and...

متن کامل

Permutable fuzzy consequence and interior operators and their connection with fuzzy relations

Fuzzy operators are an essential tool in many fields and the operation of composition is often needed. In general, composition is not a commutative operation. However, it is very useful to have operators for which the order of composition does not affect the result. In this paper, we analyze when permutability appears. That is, when the order of application of the operators does not change the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2006